OXIDATION OF TELLURIUM BY HIGH OXIDATION STATE FLUORIDES IN ACETONITRILE

Nashunmenghe Bao, Laurence McGhee and John M. Winfield Department of Chemistry, University of Glasgow, Glasgow G12 8QQ (U.K.)

Elemental I_2 is oxidised by either MoF₆ or UF₆ in MeCN at ambient temperature to give solid $[I(NCMe)_2][MF_6]$, M = Mo or U [1]. Bromine under similar conditions is oxidised by UF_6 to give [Me-C=N-(Me)C=N-(Me)C=N-Br] - $[UF_6]$ in which 'positive' Br is bound to a -C=N- trimer [2]. A third type of cation is formed by oxidation of Te using either MoF_6 or UF_6 . The products are crystalline solids which are formulated on the basis of their analyses, ¹²⁵Te n.m.r., vibrational and electronic spectra as $[TeF_3(NCMe)_2][MF_6]$, $3MF_5$.NCMe, M = Mo or U. Similar reactions occur between Mo or W metals and MoF_6 or WF_6 to give MF_5 .NCMe and this aided the characterisation of the Te-containing salts. Although SbF $_{\rm S}$ and AsF $_{\rm S}$ are strong oxidising agents in acidic media [3], the complexes SbF_5NCMe and AsF5.NCMe are weak oxidising agents in MeCN. Oxidation of Te by these species is limited to the formation of Te_4^{2+} . The NO⁺ cation shows intermediate behaviour hence the order of oxidising ability experimentally established in MeCN is $UF_6 > MoF_6 > NO^+ > SbF_5$.NCMe, AsF₅.NCMe.

G.M. Anderson and J.M. Winfield, <u>J.Chem. Soc., Dalton Trans</u>., 337 (1986).
L. McGhee, D.S. Rycroft and J.M. Winfield, <u>J. Fluorine Chem.</u>, 36, 351 (1987).

³ e.g. T.A. O'Donnell, <u>Chem. Soc. Rev., 16</u>, 1 (1987).